home *** CD-ROM | disk | FTP | other *** search
- /*******************************************************************************
- +
- + LEDA 3.1c
- +
- +
- + _bellman_ford.c
- +
- +
- + Copyright (c) 1994 by Max-Planck-Institut fuer Informatik
- + Im Stadtwald, 6600 Saarbruecken, FRG
- + All rights reserved.
- +
- *******************************************************************************/
-
-
-
- /*******************************************************************************
- * *
- * BELLMAN FORD *
- * *
- *******************************************************************************/
-
- #include <LEDA/graph_alg.h>
- #include <LEDA/b_queue.h>
-
-
- bool BELLMAN_FORD(const graph& G, node s, const edge_array<num_type>& cost,
- node_array<num_type>& dist,
- node_array<edge>& pred )
-
- /* single source shortest paths from s using a queue (breadth first search)
- computes for all nodes v:
- a) dist[v] = cost of shortest path from s to v
- b) pred[v] = predecessor edge of v in shortest paths tree
- */
-
- {
- node_data<int> count(G,0);
-
- int n = G.number_of_nodes();
-
- node_list Q;
-
- node u,v;
- edge e;
-
- forall_nodes(v,G)
- { pred[v] = 0;
- dist[v] = max_num;
- }
-
- dist[s] = 0;
- Q.append(s);
-
- while(! Q.empty() )
- { u = Q.pop();
-
- if (++count[u] > n) return false; // negative cycle
-
- num_type du = dist[u];
-
- forall_adj_edges(e,u)
- { v = target(e);
- num_type c = du + cost[e];
- if (c < dist[v])
- { dist[v] = c;
- pred[v] = e;
- if (!Q.member(v)) Q.append(v);
- }
- }
- }
- return true;
- }
-
-